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Maximum-Weight Spanning Tree Problem
Input: Graph G = (V, F) and edge weights w € ZZ

Output: the spanning tree T' of G with the maximum total
weight




Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)




Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges |
Input: Graph G = (V, F) and edge weights w € ZZ
a set Fy C E of edges, that does not contain a cycle

Output: the maximum-weight spanning tree 7' = (V| Er) of G
satisfying Fi, C Fr

Lemma (Key Lemma) Given an instance (G = (V, E), w, Fy) of
the MST with pre-selected edges problem, let ¢* be the maximum
weight edge in £\ F{ such that F U {e*} does not contain a
cycle. Then there is an optimum solution 7" = (V, Er) to the
instance with e* € Frp.




S

edges in optimum tree
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@ Greedy Algorithms: Maximum-Weight Independent Set in
Matroids

@ Matroids and Maximum-Weight Independent Set in Matroids



Q: Does the greedy algorithm work for more general problems? J

A General Maximization Problem
Input: E: the ground set of elements
w € ZE,: weight vector on elements
S: an (implicitly given) family of subsets of £

o lesS
e S is downward closed: if A€ S,B C A, then B € S.

Output: A € S that maximizes ) _, w.

@ maximum-weight spanning tree: & = family of forests



Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A

Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C'

@ Maximum Weight Bipartite Graph Matching

e Matroids: cases where greedy algorithm is optimum



Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el
@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.

Lemma Let G = (V,E). FC Eisin Ziff (V,F) is a forest.
Then (E,Z) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.
e |B| < |A| = (V, B) has more CC than (V, A).
@ Some edge in A connects two different CC of (V, B). O



Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

@ ¢y =y =10,c3 =20,C = 20.
o {1,2},{3} €Z, but {1,3},{2,3} ¢ Z.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

e Complete bipartite graph between {a1,as} and {by, by }.
o {(ah bl)7 ((1,2, b2>}7 {(ab b2)} S

Theorem The greedy algorithm gives optimum solution for the
maximum-weight independent set problem in a matroid.




Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, ASSUMING e* exists

@ Then, some optimum solution contains e*

Proof.

@ let S D A,S €T be an optimum solution, e* ¢ S

0 S'+— AU {e*}

: while [S'| < |S| do

3 let e be any element in S\ S" with S"U{e} € Z

N =

> e exists due to exchange property

4. S+ SuU {e}
e 5" and S differ by exactly one element
o w(S') =3 cqwe>w(S) = Sis also optimum




Examples of Matroids

@ F: the ground set Z: the family of independent sets

@ Uniform Matroid: k € Z+,.
I={ACE:|Al <k}
e Partition Matroid: partition (E;, Es, - - , E;) of E, positive
integers kq, ko, -+, k;
I={ACE:|ANE; <k;,Vielt]}
@ Laminar Matroid: laminar family of subsets of £
{E1, Es,--- , E}, positive integers ki, ko, - -+ , ki
I={ACE:|ANE]| <k,Vielt]}.

Def. A family {E), Es,--- , E;} of subsets of E is said to be
laminar if for every two distinct subsets F;, F; in the family, we
have E;NE;=0or E; C E; or E; C E,.

==




° {{1},{1,2},{3,4},{5},{3,4,5,6},{1,2,3,4,5,6}} is a

laminar family.
|



Examples of Matroids

e E: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V| E)
I={ACE:(V,A)is a forest}
@ Transversal Matroid: a bipartite graph G = (F W B, £)
Z = {A C E : there is a matching in G covering A}
@ Linear Matroid: a vector 7, € R? for every e € E/

Z ={A C E : vectors {U.}.ca are linearly independent}

Relationship between matroids

Laminar \
Uniform —— Partition Aransversal7'hnear

Graphic




Other Terminologies Related To a Matroid M = (E,T)
@ A subset of E that is not independent is dependent.
@ A maximal indepent set is called a basis (plural: bases)

@ A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof. |
By exchange property. O

Def. Given a matroid M = (E,Z), the rank of a subset A of F,
denoted as 7 ((A), is defined as the size of the maximum
independent subset of A. ry : 28 — Zs is called the rank
function of M.
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Vertex Cover Problem

Def. Given a graph G = (V, E), a vertex cover of G is a subset
C' C V such that for every (u,v) € Ethenu e C orv e C . J

Vertex-Cover Problem
Input: G = (V,E)

Output: a vertex cover C' with minimum |C/|




First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1. B+ E,C<+ 0
2: while £’ # () do
3: let v be the vertex of the maximum degree in (V, E')
4: C+Cu {U},
5 remove all edges incident to v from E’
6: return C

Theorem Greedy algorithm is an (Inn + 1)-approximation for
vertex-cover.

@ We prove it for the more general set cover problem

@ The logarithmic factor is tight for this algorithm



2-Approximation Algorithm for Vertex Cover

1: E/(—E,C<—®
2: while £’ # () do

3: let (u,v) be any edge in E’

4: C « CU{u,v}

b remove all edges incident to « and v from £’
6: return C

@ counter-intuitive: adding both u and v to C' seems wasteful

@ intuition for the 2-approximation ratio:
e optimum solution C* must cover edge (u,v), using either u or v
e we select both, so we are always ahead of the optimum solution
e we use at most 2 times more vertices than C* does



2-Approximation Algorithm for Vertex Cover
1. B« E C + 0
2: while £’ # () do
3 let (u,v) be any edge in E’
4: C + CU{u,v}
5 remove all edges incident to u and v from £’
6: return C

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

Proof.

@ Let E’ be the set of edges (u,v) considered in Step 3
@ Observation: E’ is a matching and |C| = 2| £/

@ To cover E’, the optimum solution needs |E’| vertices

]
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Set Cover with Bounded Frequency f
Input: U, |U| = n: ground set
S1,8%,-++, 9, CU
every j € U appears in at most f subsets in
{51,855, ,S,}
Output: minimum size set C' C [m] such that | J,. S; = U

Vertex Cover = Set Cover with Frequency 2

@ edges & elements

@ vertices < sets

@ every edge (element) can be covered by 2 vertices (sets)




f-Approximation Algorithm for Set Cover with Frequency f

1. C« 0

2: while |, S; # U do

3 let e be any element in U\ | ;. Si
4 C+—Cu{ie[m]:ee S}

5: return C

Theorem The algorithm is a f-approximation algorithm.

Proof.

@ Let U’ be the set of all elements e considered in Step 3
@ Observation: no set S; contains two elements in U’

@ To cover U’, the optimum solution needs |U’| sets

o C < f-|U|
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Set Cover
Input: U, |U| = n: ground set
S1, 52, ,Sm CU
Output: minimum size set C' C [m] such that | J,. S;i = U

Greedy Algorithm for Set Cover
1: C«+ @, U+U
2: while U’ # () do
3 choose the ¢ that maximizes |U’ N S|
& O« CU{}U « U\S
5. return C




@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>( be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
U < <1 — —> cUp—1-
9

Proof.

e Consider the g sets 57,53, , Sy in optimum solution
@ STUSU---US;=U

@ at beginning of step ¢, some set in 57,55, ,.5; must

contain > “tT‘l uncovered elements

Ut—1 __ 1
@ up S U — 7 (1 - 5) Ut—1.-




Proof of (Inn + 1)-approximation.
@ Lett=[g-Inn]|. ug =n. Then

Inn

1g~1nn _
) ‘n<e n

<(1-=
ut_( g

Il
3

@ So u; = 0, approximation ratio < (g'lsfn"w <Inn+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.

(1 — ¢) Inn-hardness for any ¢ = Q(1)

Let ¢ > 0 be any constant. There is no polynomial-time

(1 — ¢) In n-approximation algorithm for set-cover, unless

@ NP C quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998|
e P = NP. [Dinur, Steuer 2014]
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@ set cover: use smallest number of sets to cover all elements.
@ maximum coverage: use k sets to cover maximum number of
elements
Maximum Coverage
Input: U, |U| = n: ground set,
S1,82,+++, 8, CU, k € [m)]
Output: C C [m],|C| = k with the maximum J,. S;

Greedy Algorithm for Maximum Coverage

1. C«+0U«+U

2: for t < 1 to k do

3: choose the ¢ that maximizes |U’ N S;|
4: C+ CU{i},U < U\ S;

5. return C




Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof. |
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

0 — P

°pt2pt—l+%

e o-nSomp = (1Yo p

°0—pk§( —%) (O—PO)S%'O

opkz(l—é)-o ]

J

The (1 — 1)-approximation extends to a more general problem.



Outline
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Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA, BCn:
f(AUB) + f(ANB) < f(A) + f(B).

(2) VAC BC|[n],i €[n]\B:
f(BU{i}) — f(B) < f(AU{i}) — f(A).

(3) VACIn],i,j€n]\4,i#:
fAU{i,i}) + f(A) < f(Au{i}) + F(AU {5}

@ (2): diminishing marginal values: the marginal value by getting
7 when | have B is at most that when | have A C B.

o (=2)=0B), B)=2=01



Examples of Sumodular Functions

@ linear function: f(S sz,VS -

€S

@ budget-additive function: f(S mln{sz, } VS C [n]

€S
@ coverage function: given sets S1,55,---,5, C Q,
£(C) == ‘UZEC s, v C )

@ matroid rank function: given a matroid M = ([n],Z)
rm(A) =max{|A'|: A C A A €T}, VAC[n]
e cut function: given graph G = ([n], E)
F(A) = |E(A, [n]\ 4],

C [n]



Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) = H(X;:i € S),¥S C [n]

Def. A submodular function f : 2[") — R is said to be monotone
if f(A) < f(B) for every AC B C [n].

Def. A submodular function f : 2[") — R is said to be
symmetric if f(A) = f([n]\ A) for every A C [n].

@ coverage, matroid rank and entropy functions are monotone

@ cut function is symmetric



(1 - %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)

@ We can assume f()) =0

Greedy Algorithm for the Problem
1. S« 0
2: fort < 1to k do
3: choose the i that maximizes f(S U {i})
4. S+ SuU {Z}
5. return S




Theorem Greedy algorithm gives (1 — %)—approximation for
submodular-maximization under a cardinality constraint.

Proof.
@ o: optimum value

@ p,;: value obtained by greedy algorithm after step ¢

0— Pi_
@ need to prove: p; > py_1 + %
oo_pt<0_pt71_HTt_1: 1—%)(0—1%71)

+ 0

o l=

o—pr < (1— 1) 0—po) <
pe>(1-1)-0




Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).

Lemma A non-negative submodular set function f : 2" — R,
is sub-additive.

Proof.
For A, B C [n], we have f(AUB) + f(ANB) < f(A) + f(B).
So, f(AUB) < f(A)+ f(B) as f(ANB) > 0. O

V.




Lemma Let f: 2 — R be submodular. Let S C [n], and
fs(A) = f(SUA)— f(S) for every A C [n]. (fs is the marginal
value function for set S.) Then fs is also submodular.

Proof. |
o Let A, B C [n]\ S; it suffices to consider ground set [n] \ S.

fs(AUB) + fs(AN B) — fs(A) + fs(B)
= f(SUAUB) - f(S) + f(SU(AN B)) — f(5)

— (F(SUA) = £(S) + f(SUB) - £(5))
=f(SUAUB)+ f(SU(ANB))— f(SUA)— f(SUB)
<0

@ The last inequality is by SUAUB = (SUA) U (SUB),
SU(ANB) = (SUA)N(SUB) and submodularity of f. [




Proof of py > py_1 + “F=.

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
S| =t—1, pr1 = f(S5)

@ fs is submodular and thus sub-additive

f(S) S Y fsli) = e S fs() 2 pfs(S)

i€S*

@ for the 7, we have
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Local Search for Maximum-Cut

Maximum-Cut
Input: Graph G = (V) E)
Output: partition of V into (S,7 =V \ S) so as to maximize
|E(S,T)|, E(S,T)={w e E:ueSAveT}.

Def. A solution (S,T) is a local-optimum if moving any vertex
to its opposite side can not increase the cut value.

Local-Search for Maximum-Cut

: (S,T) < any cut

2: while Jv € V, changing side of v increases cut value do
3: switch v to the other side in (S, T)
4

. return (S, 7))

[y




Lemma Local search gives a 2-approximation for maximum-cut. J

@ d,: degree of v

Proof.
e VweS:E(,S)<E(T)=|E({,S)| > id,
e VweT:E(wT)<E(wS)=|EwT)| > 3id,

@ adding all inequalities:

1
2B(S,T)| 2 5 3 dv=|B]

veV

e So |E(S,T)| > 1|E| > L(value of optimum cut).




@ The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1: S+ @,T +— 0
2: for every v € V, in arbitrary order do
3: adding v to S or T so as to maximize |E(S,T)|

4: return (S, 7))

@ [Goemans-Williamson] 0.878-approximation via Semi-definite
programming (SDP)

@ Under Unique-Game-Conjecture (UGC), the ratio is best
possible
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"o Facilities !
"o Clients

]

Uncapacitated Facility Location
Input: F: Facilities C'": Clients
d: metric over F' U C (fi)icer: facility costs
Output: S C F', so as to minimize) ;¢ fi + > d(j,5)
d(j,S): smallest distance between j and a facility in S )

@ Best-approximation ratio: 1.488-Approximation [Li, 2011]
@ 1.463-hardness, 1.463 ~ root of z =1+ 2¢™ 7



o cost(S) == icg fi+ D0 d(d,5), VS C F

Local Search Algorithm for Uncapacitated Facility Location

1: S « arbitrary set of facilities

2: while exists S’ C F with |S\ S| <1, |S"\ S| <1and
cost(S") < cost(S) do

3: S' '« S

4: return S

@ The algorithm runs in pseodu-polynomial time, but we ignore
the issue for now.

S is a local optimum, under the following local operations
@ add(i),i ¢ S: S + SU{i}

@ delete(i),i € S: S« S\ {i}

@ swap(i,i'),i € S,i' ¢ S: S+ S\ {i}u{i}




@ S: the local optimum returned by the algorithm

@ S*: the (unknown) optimum solution

F=)f C:=) d(j,59)

ics jec
F* = Zfz C* = Zd(j, S*)
i€s* jec

Lemma (analysis for connection cost) C' < F* 4 C*

Lemma (analysis for facility cost) F' < F™* 4 2C*

So, F+C <2F*+3C* < 3(F*+ C")
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S ‘ Analysis of C

; O Facilities |

3 ® Clients @ adding ¢* does not increase the cost:
D GwiSfet Y cn
jEO‘*_l(i*) jEO‘*_l(i*)

@ summing up over all 7* € F™*, we get

S do(), ) < Y e+ > de* (), 4)

jeJ i*el* jeJ

C<F*4+(C*
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@ 2-Approximation Algorithm for Vertex Cover
@ f-Approximation for Set-Cover with Frequency f
@ (Inn + 1)-Approximation for Set-Cover
° (1 — l)—Approximation for Maximum Coverage

e

° (1 — l)—Approximation for Submodular Maximization under

e

a Cardinality Constraint

© Local Search
@ Warmup Problem: 2-Approximation for Maximum-Cut
@ Local Search for Uncapacitated Facility Location Problem
@ Local Search for UFL: Analysis for Connection Cost

@ Local Search for UFL: Analysis for Facility Cost
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; O Facilities !

|
e Clients |
I

Analysis of F
@ ¢(i*),i* € S*: closest facility in S to *
@ (i),i € S: closest facility in ¢~1(4) to i
@ i€ S,¢7(i) = 0: consider delete(s)

o j € o~ !(i) reconnected to i* := ¢(c*(j))

e reconnection distance is at most

Cixj + Cix (i) < Cixj + Cixg
< ¢ixj + Cirj + Cij = 2¢i+j + Cij
e distance increment is at most 2¢;+;
e by local optimality:

fiS2 ) copy
)

jEoL(i




S ‘ Analysis of F

, O Facilities !

e Clients | @ ¢(i*),i* € S*: closest facility in S to i*

@ (i),i € S: closest facility in ¢~1(4) to i
@ ¢(i*) =i, (i) # ¢*: consider add(i*)

e 0(j) =1i,0"(j) = i*: reconnect j to i*

e by local optimality:

0< fir + > (cirj — Ca(j)j)

jeo=H(@(i*))No*—1(i*)




'O Bt ‘ Analysis of F'

, O Facilities |

3 ® (lients 3 @ C S, ¢_1(Z) 7é @, ¢(Z/) = Z,l/)(l) =

consider swap(i, i)

o o(j) =1,¢6(c*(j)) # i: reconnect j to it
distance increment is at most 2¢,«(;y;

o 0(j) =1i,¢(c*(j)) = i: reconnect j to i’
distance increment is at most

Cij + Ciit — Cij = Cii < Cigr(j) < Cij + Cox(j)j
° fisfi+2 > Co*(7)i
j€oH(i):¢(o* (5))#i

+ ) (cij + Con(j);)
jeo=1()plo" (1))=i




@ ¢ € S is not paired: f; <2 Z Co*(5);
jeo=1(i)
@ i* € S*is not paired: 0 < fi + Z (Civj — Co(s)7)
jeo=t(g(i*))no*—1(i*)
@ ;€S andi € S5* are paired:

fis fut2 > Com(j); + (€ij + Con(5)5)
JETTH(i):p(0* (5)) #i JETTH(i):¢(0* (5))=i
@ summing all the inequalities:
DAY fer2 ) crwy
€S ires* J€D:¢(a* (7)) #0(5)

+ Z (Cor()j = Coti)i T Coti)j + Cor(i)j) + 2
JED:¢(a* () =0 (4) jED:
F<F"+20C"



C<F"+C7 F < F* 420"
= F+C<2F"43C" <3(F*+C")

Exercise: scaling facility costs by some A > 1 can give a
(1 + /2)-approximation.

@ Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location
1: S < arbitrary set of facilities, § + ﬁ
2: while exists S’ C F with |[S\ S| <1, |S"\ S| <1 and
cost(S") < (1 — §)cost(S) do
S« S
return S

v @




	Greedy Algorithms: Maximum-Weight Independent Set in Matroids
	Recap: Maximum-Weight Spanning Tree Problem
	Matroids and Maximum-Weight Independent Set in Matroids

	Greedy Algorithms: Set Cover and Related Problems
	2-Approximation Algorithm for Vertex Cover
	f-Approximation for Set-Cover with Frequency f
	(n + 1)-Approximation for Set-Cover
	(to.1-1e)to.-Approximation for Maximum Coverage
	(to.1-1e)to.-Approximation for Submodular Maximization under a Cardinality Constraint

	Local Search
	Warmup Problem: 2-Approximation for Maximum-Cut
	Local Search for Uncapacitated Facility Location Problem
	Local Search for UFL: Analysis for Connection Cost
	Local Search for UFL: Analysis for Facility Cost


