Homework #6

截止日期: 5月20日23:59之前

问题 #1 (Hall's drawing)

- (1) 考虑把图画在一条线上,我们使用非零单位向量 $x \in \mathbb{R}^n$, $x \neq 0$ 表示一种画法: x_i 代表点 i 画在 \mathbb{R} 上的位置。我们的目标是最小化 $x^{\top}Lx = \sum_{ij \in E} (x_i x_j)^2$, 其中 L 是图的 Laplacian 矩阵;注意到 x + 1 是等价于 x 的(仅仅是做了一个平移,1 是全 1 向量),因此不妨考虑 $\langle x, 1 \rangle = 0$ 的答案。请用 L 的特征向量写出这样的 x。
- (2) 如果想把图画在平面上,假设我们使用非零单位向量 $x \in \mathbb{R}^n, y \in \mathbb{R}^n$ 来表示一种画法: (x_i, y_i) 代表点 i 画在平面 \mathbb{R}^2 上的位置。我们的目标是最小化一个类似的 2-范数: $\sum_{ij \in E} \|(x_i, y_i) (x_j, y_j)\|_2^2$; 类似地,不失一般性地可以假设 $\langle \mathbf{1}, x \rangle = 0$ 和 $\langle \mathbf{1}, y \rangle = 0$. 请用 L 的特征向量写出这样的 x 和 y。如果额外地要求 x 与 y 是正交的话,你的答案会有什么变化?

问题 #2

设 A 是一个无向图的邻接矩阵, α_1 是它的最大特征值。

- 1. 我们在课上证明了 $\alpha_1 \leq d_{\max}$ 。你能否证明 $\alpha_1 \geq d_{avg}$? 这里 $d_{avg} := \frac{2|E|}{|V|}$ 表示图的平均度数。
- 2. 图的色数 (chromatic number) $\chi(G)$,是给所有顶点着色,使得任意两个相邻的顶点颜色不同的所有着色方案中,所需的最小颜色数。证明 $\chi(G) \leq |\alpha_1| + 1$ 。你能否设计一个算法来产生这样的着色方案?

问题 #3

对 n 个顶点的无向完全图上每个顶点加上一个自环,记为图 G。注意此时每个顶点的度数均为 n。回顾拉普拉斯矩阵的定义为 L = D - A。其中 D 为对角线上是度数的矩阵,A 为邻接矩阵。

- 1. 请写出 G 上随机游走的转移矩阵 P,以及 P 的所有特征值和特征向量。
- 2. 请写出随机游走在 G 上的稳态分布。
- 3. 试求随机游走在 G 上的 ε- 混合时间 (mixing time)。

问题 #4

对任意给定的一个 n 个顶点的无向图 G,考虑其拉普拉斯矩阵 L = D - A。其中 D 为对角线上是度数的矩阵,A 为邻接矩阵。

1. 对于任意给定的 k 个两两互不相同的、非零的实数 λ_i ,设多项式 p 满足

$$\forall i, 1 \leq i \leq k, \lambda_i p(\lambda_i) = 1.$$

请证明:次数最多为k-1次的多项式中有且只有一个满足条件的p.

- 2. 假设拉普拉斯矩阵 L 有 k 个两两互不相同的、非零的特征值。请证明:存在次数最多为 k-1 次的多项式 p 使得 p(L) 是 L 的伪逆(pseudoinverse)。换言之, $\forall \vec{x} \in \mathbb{R}^n, \vec{x} \in (\text{Ker}(L))^\perp$ (即满足 \vec{x} 与任意满足 $L\vec{v} = 0$ 的向量 \vec{v} 正交),都有 $Lp(L)\vec{x} = \vec{x}$. (提示:研究矩阵 Lp(L) 的特征值)
- 3. 回顾 L 的第二小特征值 $\lambda_2=0$ 当且仅当图 G 是不连通的。假设 $\lambda_2=0$ 。试设计一个算法,它的输入是 λ_2 对应的特征向量 v_2 ,输出是 G 的两个互不连通的顶点集 V_1,V_2 。