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Limit Theorems
Let  be i.i.d. random variables with  and .


And let  be the sample mean.


• Law of large numbers (LLN): sample mean  expectation


      as  


• Central limit theorem (CLT): standardized sample mean  standard normal


      as  

X1, X2, … μ = 𝔼[X1] Var[X1] = σ2

Xn =
1
n

n

∑
i=1

Xi

→

Xn ⟶ μ n → ∞

→

Xn − μ

σ/ n
⟶ N(0,1) n → ∞



Convergence
• A real sequence  converges to , denoted  or , 

if for all , there is  such that  for all  


• A sequence   is said to converge pointwise to , 
if  and only if   for all 


• For random variables  and  on probability space :


- random variables  and  are functions


- CDFs  and  are functions


• Should  be:  pointwise or  pointwise? 

{an} a ∈ ℝ lim
n→∞

an = a an → a
ϵ > 0 N |an − a | < ϵ n > N

f1, f2, … : Ω → ℝ f : Ω → ℝ
lim
n→∞

fn(x) = f(x) x ∈ Ω

X1, X2, … X (Ω, Σ, Pr)
X1, X2, … : Ω → ℝ X : Ω → ℝ

FX1
, FX2

, … : ℝ → [0,1] FX : ℝ → [0,1]

Xn → X Xn → X FXn
→ FX



Convergence of  
Random Variables

→ U[0,1]0. 🪙 🪙 🪙 ⋯



Modes of Convergence
• Let  be random variables on prob. space .


•  converges in distribution (依分布收敛) to , denoted , if




for all  at which  is continuous


•  converges in probability (依概率收敛) to , denoted , if




•  converges almost surely to , denoted , if  such that

,     and   

X, X1, X2, … : Ω → ℝ (Ω, Σ, Pr)

{Xn} X Xn
D X

FXn
(x) = Pr(Xn ≤ x) → FX(x) = Pr(X ≤ x) as n → ∞

x ∈ ℝ FX(x)

{Xn} X Xn
P X

Pr( |Xn − X | > ϵ) = 0 as n → ∞ for all ϵ > 0

{Xn} X Xn
a.s. X ∃A ∈ Σ

lim
n→∞

Xn(ω) = X(ω) for all ω ∈ A Pr(A) = 1



Modes of Convergence
• Let  and  be random variables on probability space .


•  (convergence in distribution / in law / weak convergence of measure)  if

 


for all  at which  is continuous


•  (convergence in probability / in measure) if

     for all  


•  (convergence almost surely / almost everywhere / w.p. 1) if  


X1, X2, … X (Ω, Σ, Pr)

Xn
D X

lim
n→∞

FXn
(x) = FX(x)

x ∈ ℝ FX(x)

Xn
P X

lim
n→∞

Pr( |Xn − X | > ϵ) = 0 ϵ > 0

Xn
a.s. X

Pr ( lim
n→∞

Xn = X) = 1

 pointwise 

on continuous set

FXn
→ FX

 pointwise 

on a set of measure 1

Xn → X

 

in measure

Xn → X



Convergence in Distribution
• Let  and  be random variables on probability space .


•  (convergence in distribution / in law / weak convergence of measure)  if

 


for all  at which  is continuous


• The restriction on continuity set is necessary, consider: 


uniform  on , which satisfies , where 


•   and      


•  is a weak convergence of measures

X1, X2, … X (Ω, Σ, Pr)

Xn
D X

lim
n→∞

FXn
(x) = FX(x)

x ∈ ℝ FX(x)

Xn (0,1/n) Xn
D X Pr(X = 0) = 1

Xn
D X FX = FY ⟹ Xn

D Y

Xn
D X

 pointwise 

on continuous set

FXn
→ FX

(convergence in distribution 

depends only on distribution)



Convergence in Probability
• Let  and  be random variables on probability space .


•  (convergence in probability) if

     for all  


• Functions  converges to  in measure 


•     


• Counterexample for converse:   is uniform on  and 


• If , where  is a constant, then 


• Proof:   if 

X1, X2, … X (Ω, Σ, Pr)

Xn
P X

lim
n→∞

Pr( |Xn − X | > ϵ) = 0 ϵ > 0

Xn : Ω → ℝ X : Ω → ℝ Pr

Xn
P X ⟹ Xn

D X
X [0,1] Xn = 1 − X

Xn
D c c ∈ ℝ Xn

P c
Pr( |Xn − c | > ϵ) = Pr(Xn < c − ϵ) + Pr(Xn > ϵ + c) → 0 Xn

D c

 

in measure

Xn → X



Almost Sure Convergence
• Let  and  be random variables on probability space .


•  (convergence almost surely / almost everywhere / w.p. 1) if  





•  converges to  almost everywhere except a null set


•       


- Counterexample for converse:  are independent .  
We have , but we do not have  almost everywhere as .


* The event   is:  

X1, X2, … X (Ω, Σ, Pr)

Xn
a.s. X

Pr ( lim
n→∞

Xn = X) = 1

Xn : Ω → ℝ X : Ω → ℝ

Xn
a.s. X ⟹ Xn

P X
{Xn} Bernoulli(1/n)

Xn
P 0 Xn = 0 n → ∞

lim
n→∞

Xn = X ⋂∞
m=1 ⋃∞

n0=1 ⋂∞
n=n0 {ω ∈ Ω : |Xn(ω) − X(ω) | ≤ 1/m}

 pointwise 

on a set of measure 1

Xn → X



Strength of Convergence
•         


Proof* (     ): Let event , then .


For any , let event . 


Assume , then , such that . Therefore .


Since , and ,


.


Therefore, 


, i.e. .

(Xn
a.s. X) ⟹ (Xn

P X) ⟹ (Xn
D X)

Xn
a.s. c ⟹ Xn

P c C ≜ {Xn → c} Pr(C) = 1

ϵ > 0 Ak ≜ {∀n ≥ k, |Xn − c | < ϵ}

Xn
a.s. X ∃k ∀n ≥ k, C ⊆ An C ⊆

∞

⋃
k=1

Ak

A1 ⊆ A2 ⊆ … Ak ⊆ { |Xn − c | < ϵ}

lim
n→∞

Pr( |Xn − c | < ϵ) ≥ lim
n→∞

Pr(Ak) = Pr(∪∞
k=1Ak) ≥ Pr(C) = 1

lim
n→∞

Pr( |Xn − c | ≥ ϵ) = 0 Xn
P X



Other Convergence Modes*
•  (convergence in mean) if  





•  (convergence in th mean / in the -norm) if  





       


      

Xn
1 X

lim
n→∞

𝔼 [ |Xn − X |] = 0

Xn
r X r Lr

lim
n→∞

𝔼 [ |Xn − X |r ] = 0

(Xn
a.s. X) ⟹ (Xn

P X) ⟹ (Xn
D X)

(Xn
s X) ⟹ (Xn

r X) ⟹ (Xn
1 X)

(for )s ≥ r ≥ 1

⇑



LLN and CLT



Bernoulli’s Law of Large Number

• Let  be i.i.d. Bernoulli trials with . Then


     as      for all 


 i.e. , where  is the sample mean 


 Proof: By Chebyshev’s inequality,   as 


(This is of course not the original proof of Bernoulli.)

X1, X2, … 𝔼[X1] = p ∈ [0,1]

Pr ( X1 + X2 + ⋯ + Xn

n
− p > ϵ) → 0 n → ∞ ϵ > 0

Xn
P p Xn Xn =

X1 + X2 + ⋯ + Xn

n

Pr( |Xn − p | > ϵ) ≤
p(1 − p)

nϵ2
→ 0 n → ∞

In Ars Conjectandi (1713)



Law of Large Numbers (LLN)
Let  be i.i.d. random variables with finite mean .


And let  be the sample mean.


• Weak law (Khinchin’s law) of large number:


  as   


• Strong law (Kolmogorov’s law) of large number:


  as  


(The deviation  is always small for all sufficiently large )

X1, X2, … 𝔼[X1] = μ

Xn =
1
n

n

∑
i=1

Xi

Xn
P μ n → ∞

Xn
a.s. μ n → ∞

|Xn − μ | n



Weak LLN Assuming Bounded Variance

• Let  be independent random variables with finite mean  
and finitely bounded variance . 


Then the sample mean  has


  as  


Proof: By Chebysev’s inequality,   as 

X1, X2, … 𝔼[Xi] = μ
Var[Xi] ≤ σ2

Xn =
1
n

n

∑
i=1

Xi

Xn
P μ n → ∞

Pr( |Xn − μ | > ϵ) ≤
σ2

nϵ2
→ 0 n → ∞



De Moivre—Laplace Theorem
(棣莫弗－拉普拉斯定理)

• Let  and . Then its standardization


   as  


• For any  and any , there is an  such that for all  and 
all , 


 

p ∈ (0,1) Xn ∼ B(n, p)
Xn − np

np(1 − p)
D N(0,1) n → ∞

p ∈ (0,1) ϵ > 0 n0 n > n0
k

(n
k)pk(1 − p)n−k ∈ (1 ± ϵ)

1
2πnp(1 − p)

e− (k − np)2
2np(1 − p)

By Stirling’s formula  and Maclaurin series n! ≃ nne−n 2πn ln (1 + x) ≃ x −
x2

2
+

x3

3
− ⋯



Central Limit Theorem (CLT)

• Let  be i.i.d. random variables with  and .


And let  be the sample mean. 

• Classical (Lindeberg–Lévy) central limit theorem: 


    as  

X1, X2, … 𝔼[X1] = μ Var[X1] = σ2

Xn =
1
n

n

∑
i=1

Xi

Xn − μ

σ/ n
D N(0,1) n → ∞



Central Limit Theorem (CLT)
• Let  be i.i.d. random variables with  and .


    as  


Proof: 





X1, X2, … 𝔼[X1] = μ Var[X1] = σ2

Zn =
∑i (Xi − μ)

σ n
D N(0,1) n → ∞

MX(t) = ∑
k≥0

tk𝔼[Xk]
k!

=
t0𝔼[X0]

0!
+

t1𝔼[X1]
1!

+
t2𝔼[X2]

2!
+ o ( t2𝔼[X2]

2! )
⟹ MX1−μ(t) = 1 + t2σ2/2 + o(t2)

MZn
(t) = 𝔼[etZn] = 𝔼 [e

t
σ n

∑i (Xi−μ)] = ∏
i

𝔼 [e
t

σ n
(Xi−μ)] = (MX1−μ ( t

σ n ))
n



Central Limit Theorem (CLT)
• Let  be i.i.d. random variables with  and .


    as  


Proof:  








X1, X2, … 𝔼[X1] = μ Var[X1] = σ2

Zn =
∑i (Xi − μ)

σ n
D N(0,1) n → ∞

MX1−μ(t) = 1 + t2σ2/2 + o(t2)

MZn
(t) = (MX1−μ ( t

σ n ))
n MZn

(t) = 1 + ( t

σ n )
2

σ2/2 + o ( t

σ n )
2

n

= (1 + t2/(2n) + o(t2/n))n

lim
n→∞

MZn
(t) = lim

n→∞
(1 + t2/(2n) + o(t2/n))n = et2/2



MGF of Normal Distribution

• The moment generating function of standard normal  is 





Proof: 


   (because )

X ∼ N(0,1)

MX(t) = 𝔼[etX] = et2/2

MX(t) = 𝔼[etX] =
1

2π ∫
∞

−∞
etxe−x2/2 dx =

1

2π ∫
∞

−∞
e−x2/2+tx dx

=
1

2π
et2/2 ∫

∞

−∞
e(x−t)2/2 dx = et2/2 1

2π ∫
∞

−∞
e(x−t)2/2 dx = 1



Central Limit Theorem (CLT)
• Let  be i.i.d. random variables with  and .


    as  


Proof:  








X1, X2, … 𝔼[X1] = μ Var[X1] = σ2

Zn =
∑i (Xi − μ)

σ n
D N(0,1) n → ∞

MX1−μ(t) = 1 + t2σ2/2 + o(t2)

MZn
(t) = (MX1−μ ( t

σ n ))
n MZn

(t) = 1 + ( t

σ n )
2

σ2/2 + o ( t

σ n )
2

n

= (1 + t2/(2n) + o(t2/n))n

lim
n→∞

MZn
(t) = lim

n→∞
(1 + t2/(2n) + o(t2/n))n = et2/2

MX(t) = 𝔼[etX] = et2/2

, for MX(t) = 𝔼[etX] = et2/2 X ∼ N(0,1)= =



CLT for Non-Identically Distributed RVs*
• Let  be independent random variables with  and . 

Assume:


-  for some  (Lyapunov’s condition)


-or,  for every  (Lindeberg’s condition) 

Then


X1, X2, … 𝔼[Xi] = μi S2
n =

n

∑
i=1

Var[Xi]

lim
n→∞

1
s2+δ

n

n

∑
i=1

E [ Xi − μi
2+δ] = 0 δ > 0

lim
n→∞

1
s2

n

n

∑
i=1

E [(Xi − μi)2 ⋅ 1{ Xi − μi >εsn}] = 0 ϵ > 0

∑n
i=1 (Xi − μi)

Sn

D N(0,1)



Convergence Rate of CLT
(Berry–Esseen theorem)

• Berry–Esseen theorem: Let  be i.i.d. random variables with 

 , , and . And let . 

There is an absolute constant , such that for any 





where  stands for the CDF for standard normal distribution 

X1, X2, …
𝔼[X1] = μ Var[X1] = σ2 ρ = 𝔼[ |X1 − μ |3 ] Xn =

1
n

n

∑
i=1

Xi

C z

Pr ( Xn − μ

σ/ n
≤ z) − Φ(z) ≤

Cρ

σ3 n

Φ N(0,1)


