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Limit Theorems
Let X, X,, ... bei.id. random variables with 4 = E[X,] and Var[X,] = ¢°.

And let X, = — Z X: be the sample mean.
=1

 Law of large numbers (LLN): sample mean — expectation

X,—> U as n— oo
e Central limit theorem (CLT): standardized sample mean — standard normal
X —

of \f

—>N(O,1) as n — oo



Convergence

. Areal sequence {q,} converges to a € R, denoted lim a, = aora, — a,
n—0o0

if for all € > 0, thereis N such that |a, —a| < eforalln > N

» Asequence fi,/5, ... : £ = R is said to converge pointwise to f : 2 = R,
if and only if lim f, (x) f(x) for all x € 2
n—~oo

 For random variables X, X,, ... and X on probability space (£2, 2, Pr):

- random variables X, X5, ... : & = Rand X :  — R are functions

oL
- CDFs Fy,Fy,... : R = [0,1]and Fy : R — [0,1] are functions _¢

- Should X, — X be: X, — X pointwise or I'y — Fx pointwise?




Convergence of
Random Variables




Modes of Convergence

» Let X, X{,X,, ... : £ = R berandom variables on prob. space (£2, 2, Pr).

» {X,} converges in distribution (& %% #4%) to X, denoted X, 20X, if
FXn(x) =Pr(X, <x) - Fy(x) =Pr(X<x) as n— o

for all x € R at which Fy(x) is continuous

 {X } converges in probability (4 #

Pr(| X, — X|>¢€)=0

LF %) to X, denoted X, LX, if

as n—> oo foralle>0

. {X } converges almost surely to X, denoted X, =5 X, if JA € X such that
Im X (w) = X(w) forallw € A, and Pr(A) =1

n— 00



Modes of Convergence
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

D

« X — X (convergence in distribution / in law / weak convergence of measure) if
n—-oo on continuous set

for all x € R at which Fy(x) is continuous

« X, N ¢ (convergence in probability / in measure) if
lim Pr(| X, — X| >€)=0 forall € >0 ian’;;f,e

n— o0
e X 5 X (convergence almost surely / almost everywhere / w.p. 1) if

n
Pr( Iim X = X) — 1 X, — X pointwise
n

11— 00 on a set of measure 1




Convergence in Distribution

Let X, X5, ... and X be random variables on probability space (€2, 2, Pr).

D

X, — X (convergence in distribution / in law / weak convergence of measure) if
n—-oo on continuous set

for all x € R at which Fy(x) is continuous

The restriction on continuity set is necessary, consider:
uniform X, on (0,1/n), which satisfies X Lid X, where Pr( X =0) = 1

X _)X and FX FY — X _) Y (convergence in di;ﬁribufic.)n

depends only on distribution)

X, 2 Xis a weak convergence of measures




Convergence in Probability
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

¢ X —P> X (convergence in probability) if
lim Pr(| X, — X|>e)=0 forall € >0

n— o0

X, — X

IN measure

» Functions X, : £2 — R converges to X : {2 — R in_ measure Pr

X 5X = X, 35X
 Counterexample for converse: X is uniformon [0,1]and X, =1 — X

D . P
 If X, > ¢, where ¢ € R is a constant, then X, — ¢

* Proof: Pr(|X — ] >€)=Pr(Xn<c—€)+Pr(Xn>€+c)—>Oian2>c



Almost Sure Convergence
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

. Xn X (convergence almost surely / almost everywhere / w.p. 1) if
Pr ( lim X = X) — 1 X, = X pointwise

n— Qoo

« X : € — R convergesto X : 2 — |

e X X = X L X

on a set of measure 1

almost everywhere except a null set

- Counterexample for converse: { X | are independent Bernoulli(1/n).
We have X, —> 0, but we do not have X, = () almost everywhere as n — .



Strength of Convergence
e (XX = X, LX) = X, X)

Proof” (X, e = X, £> C): Let event C = X, — ¢}, then Pr(C) = 1.

For any € > 0, let eventAké {\Vn >k, | X, —c| <e€}.

0
Assume X, =3 X, then 3k, such that Vn > k,C C A, . Therefore C C UAk'
k=1

SinceA; CA,C...,andA, C {|X, —c| <€},
lim Pr(| X, —c| <€) > Iim Pr(4;) = Pr(U;2,A;) = Pr(C) = 1.

n—~oo n—~o0

Therefore,

Iim Pr(| X, —c| 2 ¢€) =0, i.e.XniX.

n— o0



Other Convergence Modes*

¢ X, —1> X (convergence in mean) if
lim E [|X,—X]|| =0

n— o0

e X 5 X (convergence in rth mean / in the L"-norm) if

lim E [|X,—X|"| =0
XS =X5X) = X,5X)
h
X, 5X) =X 5X) = X, > X)
(fors > r > 1)




LLN and CLT
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B Y

Bernoulli’s Law of Large Number
In Ars Conjectandi (1713)

 Let X, X,, ... bei.id. Bernoulli trials with E[X;] = p € [0,1]. Then

X1+X2+"'+Xn
Prl] | ——————p|>¢ ] >0 asn—> 00 forale>0
n

— P — — X1+X2+"’+Xn
.e. X — p, where X is the sample mean X, = —————
n

p(l —p)
ne?

Proof: By Chebyshev’s inequality, Pr(| X —p| > ¢) < — Qasn — o0

(This is of course not the original proof of Bernoulli.)




Law of Large Numbers (LLN)

Let X, X5, ... be i.i.d. random variables with finite mean E| X | = u.

_ I
And let X, = — Z X; be the sample mean.
n
i=1

 Weak law (Khinchin’s law) of large number:

7 7
. — W as n — o0

» Strong law (Kolmogorov’s law) of large nhumber:

XCI.S.
,— 1 as n — oo

(The deviation | X, — u| is always small for all sufficiently large n)



Weak LLN Assuming Bounded Variance

 Let X, X,, ... be independent random variables with finite mean E|X;| = u
and finitely bounded variance Var[X.] < o,

_ 1 +«
Then the sample mean X, = — ) X, has
n
=1

X, 5 uas n— oo
_ o’
Proof: By Chebysev’s inequality, Pr(| X, —u| >¢) < — = 0asn -

ne?



De Moivre—Laplace Theorem

(B2 9p — oL Fo i 2 72)

""""""""""""""""""""""""""""""""""""""""""""""
||||||
> n v

..................

» Letp € (0,1) and X, ~ B(n, p). Then its standardization

X . .0:3..
n — WP 2 N@O,1) as n =» o© o%sggsg&

v/ (1l —p)

» Forany p € (0,1) and any € > 0, there is an n, such that for all n > n, and
all k,

n k —k 1 (k—np)2
P —pyte(l +e)——cmin
K \/2rnp(1l — p)

x? X

By Stirling’s formula n! ~ n"e™"4/2zxn and Maclaurin series In (1 + x) ~ x — 7 + ? — e



Central Limit Theorem (CLT)

. Let X;,X,, ... bei.i.d. random variables with E[X;] = u and Var[X,] = ¢°.

_ |
And let X, = — Z X; be the sample mean.
=1
» Classical (Lindeberg-Lévy) central limit theorem:

Y —
n— F S NO,1) as n— o

o/ ﬁ



Central Limit Theorem (C

o+ Let X, X,, ... beiid. random variables with

7 — Zi(Xi_//t) D

n
o/

LT)

Proof: My(t) = Z r O
k>0 ’ '

= My _,(0) =1+176°/2 + o(t*)

MZn(t) — _[eth] — [F [emzi(Xi—ﬂ)

l

FELXY EXY] .\ ' E[X']

=H_[G

1!

t2

— N(0,1) as n —> o©




Central Limit Theorem (CLT)

. Let X|,X,, ... bei.i.d. random variables with E[X;] = u and Var[X,] = ¢°.

Z-(Xi_ﬂ)
7 ="' " ZNO,1) as n— oo

n
o/

Proof:

My _(0) =1+ 1°6°/2 + o(t*) N N\
" My, (1) = 1+< )02/2+0 ( )
f Z,
oV = (14 12/2n) + o(t*/n))’
lim M, (1) = lim (1 + £2/(2n) + o(t*/n))" = &'

n— oo n— o0

n




MGF of Normal Distribution

» The moment generating function of standard normal X ~ N(0,1) is

MX(I) — _[etX] — et2/2

1
V2n
|

0
y N2 y
= e QJ e D72 dx = e'? (because
— Q0

Ner

1
V2n

I J e(x—t)2/2 dx = 1)
V 271' — 0

Proof: M, (1) = C[e™] =

00 00
— 2 )
[ etxe x“/2 dy = [ e [2+1x dx
—00 —00




Central Limit Theorem (CLT)

» Let X, X,, ... beiid. random variables with E[X;] = y and Var|X,] = c°.
- Zi (Xl T /’t) D

— N(,1) as n—>

/

n

o\/ 2
Proof: \44;@ = E[e”] = "™

My _ () = 14+176°/2 + o(t”) S\ -\
& M, (1) = 1+( ) 6’12 + 0 ( )
o= (1 (=2)) ) )
) Gﬁ )n

fim My (5= Tim (1 + 2/2n) + 0(%/n)) (o g ) [

n

n—~o0 n— Qoo




CLT for Non-Ildentically Distributed RVs*

n
» Let X, X5, ... be independent random variables with E[X.| = u; and S,f = Z Var[X;].
i=1

Assume:

| | 248
- lim S Z E X — 2% = () for some 6 > 0 (Lyapunov’s condition)
=1

l
n— o0 S,%_l'

}] = () for every € > 0 (Lindeberg’s condition)

-0, lim iz i E [(Xl — /41-)2 - 1{

n— 00 Sn —1
=

‘Xi — Hi >85n

Then

Z?:l (X; — 1)

D
N(0,1
5 — N(0,1)



Convergence Rate of CLT

(Berry-Esseen theorem)

« Berry-Esseen theorem: Let X, X,, ... be i.i.d. random variables with

R
“[X,]1=u. Var[X] = 6% and p = E[| X, — p|’]. And let X, = — ) X,
n
=1

There is an absolute constant C, such that for any z

)_(n —H Cp
Pr <z ]|—-DP)]| <
o/\/n 03\/5

where @ stands for the CDF for standard normal distribution N(0,1)




