
Advanced Algorithms
Spectral methods and algorithms

尹一通 栗师 刘景铖

Probability amplification

Say you have a randomized algorithm that fails with probability 𝛽

To boost success probability, we can run it multiple times until it succeed

Run independently for t rounds, the failure probability becomes 𝛽𝑡

Q: Can we save randomness while still achieving the same probability amplification?

Imagine a random walk on the 𝑁 = 2𝑛 random bits

There is a set 𝐵 of size 𝛽𝑁 that we try to escape from (or avoid)

We want that the escape probability close to 𝛽𝑡

Q: Can we use a sparse expander instead of a complete graph for the random walk?

Hitting property of expander walks

Let G be a 𝑑-regular graph with n vertices, 𝛼 = 𝜖𝑑 be its spectral radius and 𝐵 be a set of
size at most 𝛽𝑛.

Then, starting from a uniformly random vertex, the probability that a t-step random walk
has never escaped from 𝐵, denoted by 𝑃(𝐵, 𝑡), is at most 𝛽 + 𝜖 𝑡.

Remarks before a proof:

• Compare this to a sequence of independent samples.

• Expander mixing lemma is like 𝑡 = 2: Note that 𝜑 𝑆 = Pr 𝑋2 ∉ 𝑆 𝑋1 ∼ 𝜋𝑆)

• Bound can be strengthened → see Chapter 4 of Pseudorandomness, by Vadhan

• Applications to error reduction for randomized algorithms
• Instead of using 𝑘𝑡 bits of randomness, only need 𝑘 + 𝑂(𝑡 log 𝑑)
• for one-sided error, escaping the bad set of “random bits”
• for two-sided error, a Chernoff type bound can also be shown → then take the majority of the

answers

Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵, 𝑋2 ∈ 𝐵, … , 𝑋𝑡 ∈ 𝐵

Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊 𝑡Π𝐵𝑢 1

To see this, notice that Pr 𝑋0 ∈ 𝐵 = Π𝐵𝑢 1
Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵 = Π𝐵𝑊Π𝐵𝑢 1

And so on and so forth.
Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have

Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Then,
Π𝐵𝑊 𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊 𝑡Π𝐵𝑢 2

 = 𝑛 Π𝐵𝑊Π𝐵
𝑡𝑢 2

 ≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2

 = 𝛽 + 𝜖 𝑡
Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣

𝐵 𝑉\𝐵

Π𝐵 =
𝐵

𝑉\𝐵
𝐼𝐵 0
0 0

𝑢 =
1

𝑛
1𝑊 =

1

𝑑
𝐴

Π𝐵Π𝐵 = Π𝐵

Hitting property of expander walks

Proof (cont’d):It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

 where last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵, 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣

𝐵 𝑉\𝐵

Π𝐵 =
𝐵

𝑉\𝐵
𝐼𝐵 0
0 0

𝑊 =
1

𝑑
𝐴 has 𝜆2(𝑊⊤𝑊) = 𝜖2

𝑢 =
1

𝑛
1, so

𝑓,𝑢

𝑢,𝑢
𝑢 = 𝑢, then 𝑣 ⊥ 1

Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊 𝑡Π𝐵𝑢 1

Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2. Then,
Π𝐵𝑊 𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊 𝑡Π𝐵𝑢 2 = 𝑛 Π𝐵𝑊Π𝐵

𝑡𝑢 2 ≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2 = 𝛽 + 𝜖 𝑡

It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

The last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵, 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

To get a tail bound, consider
𝑃 𝑆, 𝑡 = Π𝑍𝑡

𝑊Π𝑍𝑡−1
𝑊 … Π𝑍1

𝑢
1

where 𝑆 = (𝑍𝑡 , 𝑍𝑡−1,…, 𝑍1)
indicates whether 𝑍𝑖 ∈ {𝐵, ത𝐵}

Graph Sparsification

7

Given an undirected graph G=(V,E) with a weight w(e) on each edge e in E,

 we are interested in finding a “sparse” graph H that approximates G well.

There are different notions of sparsifiers, depending on what properties to preserve.

NOT in this class:

• spanners, which approximately preserves pairwise distance

• Gomory-Hu tree for all pairs mincut

We saw that, in many ways, a d-regular expander behaves like a complete graph.

Our journey starts with a notion called cut sparsifier.

Cut Approximator

Let 𝛿𝐺(𝑆) be the set of edges with one endpoint in S and one endpoint in V-S.

Let 𝑤(𝛿𝐺(𝑆)) = σ𝑒∈𝛿𝐺(𝑆) 𝑤(𝑒) be the total weight of edges in 𝛿𝐺(𝑆).

Definition (𝜖-cut approximator)

A weighted graph H=(V,F) is an 𝜖-cut approximator of G=(V,E) if for every subset 𝑆 ⊆ 𝑉,

1 − 𝜖 𝑤 𝛿𝐺 𝑆 ≤ 𝑤 𝛿𝐻 𝑆 ≤ 1 + 𝜖 𝑤 𝛿𝐺 𝑆

Note that edges in G and H could have different weights.

First Result in Cut Sparsification
Karger came up with the first sparsification result and found surprising applications.

Assumptions: The graph G is unweighted and the min-cut value of G is Ω log 𝑛 .

With the assumption on the min-cut value, there is a very simple algorithm for graph sparsification.

Algorithm: Set a sampling probability p.

 For each edge e, with probability p, put e in H with weight 1/p.

Expectation
For each edge e in 𝐺, the expected weight of e in 𝐻 is 1.

By linearity of expectation, for every 𝑆 ⊆ 𝑉,

𝐸 |𝛿𝐻 𝑆 | = 𝑝 ⋅ 𝛿𝐺 𝑆 and 𝐸 𝑤 𝛿𝐻 𝑆 = 𝛿𝐺 𝑆 .

So, the expectation is correct for every cut S.

But does it mean that all cuts will have value close to the expectation simultaneously?

Karger’s Theorem

Theorem (Karger) For any 0 < 𝜖 ≤ 1, set 𝑝 =
15 ln 𝑛

𝜖2𝑐
, where c is the min-cut value of G.

Then H is an 𝝐-cut approximator of G with 𝑂(𝑝 ⋅ 𝐸 𝐺) edges with probability ≥ 1 −
4

𝑛
.

Note that when c is less than 15ln(n), then p is at least one and there is no sparsification.

We need to prove that the weight in every cut is close to its expected value.

𝜖-cut approximator
For every 𝑆 ⊆ 𝑉,

1 − 𝜖 𝑤 𝛿𝐺 𝑆 ≤ 𝑤 𝛿𝐻 𝑆 ≤ 1 + 𝜖 𝑤 𝛿𝐺 𝑆

Analysis of One Cut

12

Consider a subset 𝑆 ⊆ 𝑉. Let 𝛿𝐺 𝑆 = 𝑘.

Recall that 𝐸 |𝛿𝐻 𝑆 | = 𝑝 ⋅ 𝛿𝐺 𝑆 = 𝑝𝑘

Since each edge is included iid with prob. 𝑝 =
15 ln 𝑛

𝜖2𝑐
, by Chernoff’s inequality:

Pr 𝑤 𝛿𝐻 𝑆 − 𝑤 𝛿𝐺 𝑆 ≥ 𝜖 ⋅ 𝑤 𝛿𝐺 𝑆

= Pr |𝛿𝐻 𝑆 | − 𝑝𝑘 ≥ 𝜖 ⋅ 𝑝𝑘 ≤ 2𝑒−
𝑝𝑘𝜖2

3 = 2𝑛−
5𝑘
𝑐

Min cut value is c, so the prob. is at most 2𝑛−5

Simply applying union bound does not work: there are 2𝑛 cuts!

Chernoff-Hoeffding: For any 0 < 𝜖 < 1, let
𝜇 = 𝐸 𝑋 , where 𝑋 = σ𝑖=1

𝑛 𝑋𝑖 and each 𝑋𝑖 ∈
0,1 is independent,

Pr 𝑋 − 𝜇 ≥ 𝜖𝜇 ≤ 2𝑒−
𝜇𝜖2

3

An important observation

14

The probability that a cut violates the requirement is smaller when the cut size is bigger.

The failure probability is biggest for minimum cuts.

But we know that there can be at most 𝑂 𝑛2 of them!

The following is a generalization of this result.

Lemma. The number of cuts with at most 𝛼𝑐 edges is at most 𝑛2𝛼 for any 𝛼 ≥ 1.

Proof (Sketch). Similar to the case when 𝛼 = 1, which follows from Karger’s randomized
min-cut algorithm.

A more careful union bound would work

15

Pr Some cut is violated ≤ σ𝑆⊆𝑉 Pr cut 𝑆 is violated
 ≤ σ𝛼≥1 σ𝑆⊆𝑉:𝛿𝐺 𝑆 =𝛼𝑐 Pr cut 𝑆 is violated

 ≤ σ𝛼≥1 𝑛2𝛼 ⋅ 2𝑛−
5𝛼𝑐

𝑐

 ≤ 2 σ𝛼≥1 𝑛−3𝛼

 ≤
4

𝑛3

Example

16

An almost complete graph has an 𝜖-cut approximation with 𝑂
𝑛 log 𝑛

𝜖2 edges.

Improved Result via Non-Uniform Sampling

17

Theorem [Benczur-Karger] Any graph G has an 𝜖-cut approximator with 𝑂
𝑛 log 𝑛

𝜖2 edges.

Time permitted, we can see an algebraic generalization of this result later, known as

spectral sparsification. One way to get it is by a matrix Chernoff bound.

Standard Applications

18

Design a fast approximation algorithm for the minimum s-t cut problem.

Minimum Cuts in Near Linear Time (Sketch)

19

Karger came up with a highly original approach to the min-cut problem, using a classical result about
spanning tree packing.

Theorem (Tutte) If G has min-cut value c, then G has c/2 edge-disjoint spanning trees.

If we have these edge-disjoint trees 𝑇1, … , 𝑇𝑐

2
, then we know that one of these trees, say T, crossed a

minimum cut S at most twice.

Karger realized that if we are given T, then we can find S in near linear time using dynamic programming.

Minimum Cuts in Near Linear Time (Sketch)

20

There is an ෨𝑂(𝑚𝑐) time algorithm to find these disjoint trees, but too slow for our purpose.

Karger’s idea, of course, is to use his graph sparsification result.

He used the uniform sampling algorithm described above to sparsify the graph

 so that it’s min-cut value is 𝑂(log 𝑛).

Then we can use the above algorithm to find the disjoint trees in ෨𝑂(𝑚) time.

Then, one of these trees would cross a min-cut at most twice.

So, running the dynamic programming on these 𝑂(log 𝑛) trees, we find a min cut in ෨𝑂(𝑚) time.

UPDATE: Deterministic Mincut in Almost-Linear Time, by Jason Li

	Slide 1: Advanced Algorithms
	Slide 2: Probability amplification
	Slide 3: Hitting property of expander walks
	Slide 4: Hitting property of expander walks
	Slide 5: Hitting property of expander walks
	Slide 6: Hitting property of expander walks
	Slide 7: Graph Sparsification
	Slide 8: Cut Approximator
	Slide 9: First Result in Cut Sparsification
	Slide 10: Expectation
	Slide 11: Karger’s Theorem
	Slide 12: Analysis of One Cut
	Slide 14: An important observation
	Slide 15: A more careful union bound would work
	Slide 16: Example
	Slide 17: Improved Result via Non-Uniform Sampling
	Slide 18: Standard Applications
	Slide 19: Minimum Cuts in Near Linear Time (Sketch)
	Slide 20: Minimum Cuts in Near Linear Time (Sketch)

