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Goals

• A quick introduction to the mathematics behind statistics

• Understand basic terminology

• Know how to formulate a statistical problem



What is statistics



See:
https://xkcd.com/882/

Note: there is even a talk show lamenting about “p-hacking” 



https://fivethirtyeight.com/features/science-isnt-broken/



Sally Clark’s case

Sally Clark was convicted for murdering her two sons, when both died within weeks after birth
Her conviction was largely based on a mis-use of statistics, for ruling out sudden infant death syndrome

• Recall the “Dominating false positive” example during probability lectures

Pr a	rare	natural	event	 innocence] ≠ Pr innocence	 a	rare	natural	event]

See also: https://en.wikipedia.org/wiki/Sally_Clark
• https://en.wikipedia.org/wiki/Base_rate_fallacy
• https://en.wikipedia.org/wiki/Prosecutor%27s_fallacy 
• TED talk by Peter Donnelly: How stats fool juries

https://en.wikipedia.org/wiki/Sally_Clark
https://en.wikipedia.org/wiki/Base_rate_fallacy
https://en.wikipedia.org/wiki/Prosecutor%27s_fallacy


What is statistics: more examples

• Travel insurance: Should you purchase insurance for your next flight?
• The same flight has a delay record of 53%
• The insurance starts paying whenever the flight is delayed for more than 10 minutes

• Clinical trial:
• Treatment I: “100% effective”, cured 3 out of 3.
• Treatment II: “95% effective”, cured 19 out of 20.
• Treatment III: “90% effective”, cured 90 out of 100.

• Which treatment is more effective?

• Dam construction in hydrology: 
• Dam should be high enough for most floods
• Should not be unnecessarily high (expensive)



What is common in these questions?

• In expectation

• Need to quantify chance (Is it worth it? Is it effective?)

• Significance of our conclusion 



Probability vs. Statistics

In probability, we often consider a well-defined/idealized random 
experiment.

• Flip a fair/unbiased coin
• Roll a fair/unloaded dice
• Draw a card



Probability vs. Statistics

In statistics, we first need a (probabilistic) model of the real world.
Randomness can come from:
• the probabilistic model (biased coin, flight delay)
• using “simple process”+ “noise” in the modelling

A statistic is anything that can be computed from collected data.
The goal is often to make inferences from collected data.

Statistical mechanics, but not probabilistic mechanics; 
Probabilistic combinatorics, but not statistical combinatorics 
(not to confuse with combinatorial statistics)

All models are wrong
but some are useful



Probability vs. Statistics

In probability: 
Previous studies found the treatment is 80% effective. Then we expect that for 
a study of 100 patients, on average 80 will be cured. And the probability that at 
least 65 will be cured is at least 99.99%.

In statistics:
Observe that 78/100 patients were cured. We will be able to conclude that: if 
we repeat this experiment, then we are 95% confident that the number of 
cured patients are between 69 to 87.

Later in class: can be derived from Chernoff-Hoeffding bound

Compute probabilities from a parametric model with known parameters

Estimate the probability of parameters given a parametric model and collected data from it



Bayesian inference

We associate a prior distribution to the unknown model and 
parameters

Then we apply Bayes’ law to transfer this from the collected 
data to a distribution on the unknown parameters.

This is called the posterior distribution.

Types of problems:
• Estimation
• Hypothesis testing



Bayesian inference: a toy model

Say we model the problem of predicting flight delays as 
independent Bernoulli’s with unknown parameter 𝑝

We observe 100 times. 

Given that there were 55 delays, what is a good estimate for 𝑝 ?

How about 𝑝̂ = 0.55 ?

In general, a statistical model is a parametric probabilistic model



Maximum likelihood estimates (MLE)

MLE asks: 
Which parameter maximizes the chances of seeing the observed data?

This is known as a point estimate.
Compare with: outputting an interval, or an estimated p.d.f.

In our toy model of independent Bernoulli’s with unknown parameter 𝑝
Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =

100
55

𝑝!! 1 − 𝑝 "!

Likelihood, or likelihood function



Maximum likelihood estimates (MLE)

MLE asks: 
Which parameter maximizes the chances of seeing the observed data?

In our toy model of independent Bernoulli’s with unknown parameter 𝑝
Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =

100
55

𝑝00 1 − 𝑝 10

𝑑
𝑑𝑝

Pr 55	ℎ𝑒𝑎𝑑𝑠	|	𝑝 =
100
55

55𝑝01 1 − 𝑝 10 − 45𝑝00 1 − 𝑝 11

Setting derivative to 0 we have 𝑝̂ = 0.55

Equivalently, one can try to maximize log-likelihood



Maximum likelihood estimates (MLE)

MLE = sample mean holds for
• 𝑛 independent Bernoulli’s with unknown parameter 𝑝
• Poisson with unknown parameter
• Gaussian

(derivations are similar)

Algorithms for MLE: often iterative, see Expectation-Maximization algorithm



Maximum likelihood estimates (MLE)

Many real-world applications:
Lifetime of a light bulb, or your hard disk: often modelled by an 
exponential distribution with unknown parameter

Mark and recapture method for estimating the size of a population: 
recall balls and bins experiments

> 171 years!



Maximum A Posteriori (MAP)

We are estimating 𝑝 given data
Why maximize Pr data|	𝑝  instead of Pr 𝑝|data  ?

Recall Bayes’ law:

Pr 𝑝|data =
Pr data|	𝑝 Pr 𝑝

Pr data

Need to choose a prior
Different priors lead to different estimate

Priorlikelihood
Posterior



Minimum mean squared error estimators

Mean squared error: in our toy model, if 𝑝 is random and 𝑝̂ is a 
constant

𝔼 𝑝̂ − 𝑝 2

Observe that 𝔼 𝑝̂ − 𝑝 2 = 𝑣𝑎𝑟 𝑝 + 𝔼𝑝 − 𝑝̂ 2 is minimized when
𝑝̂ ≔ 𝔼𝑝

If 𝑝̂ depends on the data, the mean squared error is then:
𝔼 𝑝̂ − 𝑝 2 𝑑𝑎𝑡𝑎]

By a similar argument, MMSE is given by 𝑝̂ ≔ 𝔼[𝑝|𝑑𝑎𝑡𝑎]


